
vtkplotlib Documentation
Release 1.3.0

bwoodsend

Apr 13, 2020

Contents:

1 Introduction 1
1.1 Key features . 1
1.2 Requirements for installing: . 1
1.3 Installation: . 2
1.4 Optional requirements: . 2
1.5 Quickstart: . 2

2 Indices and tables 47

Python Module Index 49

Index 51

i

ii

CHAPTER 1

Introduction

A simple library to make 3D graphics using easy. Built on top of VTK. Whilst VTK is a very versatile library, the
learning curve is steep and writing in it is slow and painful. This library seeks to overcome that by wrapping the all
ugliness into numpy friendly functions to create a 3D equivalent of matplotlib. All the VTK components/functionality
are still accessible but by default are already setup for you.

1.1 Key features

• Clean and easy to install.

• Takes advantage of VTK’s lesser known numpy support so that data can be efficiently copied by reference
between numpy and VTK making it much faster than most of the VTK examples you’ll find online.

• Has direct support for STL plotting.

• Can be embedded seamlessly into PyQt5 applications.

• Is freezable with pyinstaller.

1.2 Requirements for installing:

• numpy

• pathlib2

• matplotlib

• vtk

• future

1

https://pypi.org/project/PyQt5/
https://www.pyinstaller.org/
http://numpy.org/
https://pypi.org/project/pathlib2/
http://matplotlib.org/
https://pypi.org/project/vtk/
https://pypi.org/project/future/

vtkplotlib Documentation, Release 1.3.0

It can take VTK a few weeks to release to PyPi for a new Python version so using the absolute latest Python is not
recommended. There is no VTK version for Windows users with python 2.7 on PyPi. But you can get a .whl from
here.

1.3 Installation:

To install run the following into shell/bash/terminal. The mandatory dependencies will installed automatically.

pip install vtkplotlib

1.4 Optional requirements:

Some features require you to install the following:

• numpy-stl or any other STL library if you want to plot STL files. numpy-stl is my STL library of choice.

• PyQt5 if you want to include your plots in a larger Qt GUI.

• namegenerator for fun.

1.5 Quickstart:

1.5.1 Scatter plots:

import vtkplotlib as vpl
import numpy as np

In vtkplotlib coordinates are always expressed as numpy arrays with shape
(3,) or (n, 3) or (..., 3).
Create 30 random points.
points = np.random.uniform(-10, 10, (30, 3))

Plot the points as spheres.
vpl.scatter(points)

Show the plot.
vpl.show()

A window should open with lots of white sphere’s in it.

You can add some color using the color argument.

Colors can be assigned to all the balls using rgb

vpl.scatter(points, color=(.3, .8, .8))
vpl.show()

or rgba

vpl.scatter(points, color=(.3, .8, .8, .2))
vpl.show()

2 Chapter 1. Introduction

https://www.lfd.uci.edu/~gohlke/pythonlibs/#vtk
https://pypi.org/project/numpy-stl/
https://pypi.org/project/numpy-stl/
https://pypi.org/project/PyQt5/
https://pypi.org/project/namegenerator/

vtkplotlib Documentation, Release 1.3.0

or using any of matplotlib’s named colors using strings.

vpl.scatter(points, color="r")
vpl.show()

See matplotlib or vpl.colors.mpl_colors for a full list of available colors.

Or colors can be given per point

colors = np.random.random(points.shape)
vpl.scatter(points, color=colors)
vpl.show()

1.5.2 Line plots:

import vtkplotlib as vpl
import numpy as np

Create some kind of wiggly shape
use ``vpl.zip_axes`` to combine (x, y, z) axes
t = np.linspace(0, 2 * np.pi, 300)
points = vpl.zip_axes(np.cos(2 * t),

np.sin(3 * t),
np.cos(5 * t) * np.sin(7 *t))

Plot a line
vpl.plot(points,

color="green",
line_width=3)

vpl.show()

For plotting a polygon you can use join_ends=True to join the last point with the first.

Create the corners of an octagon
t = np.arange(0, 1, 1 / 8) * 2 * np.pi
points = vpl.zip_axes(np.cos(t), np.sin(t), 0)

Plot them
vpl.plot(points,

join_ends=True)

vpl.show()

1.5.3 Mesh plots:

class vtkplotlib.plots.MeshPlot.MeshPlot(mesh_data, tri_scalars=None, scalars=None,
color=None, opacity=None, cmap=None,
fig=’gcf’, label=None)

To plot STL files you will need some kind of STL reader library. If you don’t have one then get numpy-stl.
Their Mesh class can be passed directly to mesh_plot().

Parameters

• mesh_data (An STL (like) object (see below)) – The mesh to plot.

1.5. Quickstart: 3

https://pypi.org/project/numpy-stl/

vtkplotlib Documentation, Release 1.3.0

• tri_scalars (np.ndarray, optional) – Per-triangle scalar, texture-coordinates
or RGB values, defaults to None.

• scalars (np.ndarray, optional) – Per-vertex scalar, texture-coordinates or RGB
values, defaults to None.

• color (str, 3-tuple, 4-tuple, optional) – The color of the whole plot, ig-
nored if scalars are used, defaults to white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• cmap (matplotlib cmap, vtkLookupTable, or similar see vtkplotlib.colors.
as_vtk_cmap(), optional) – Colormap to use for scalars, defaults to rainbow.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns A meshplot object.

Return type vtkplotlib.plots.MeshPlot.MeshPlot

The following example assumes you have installed numpy-stl.

import vtkplotlib as vpl
from stl.mesh import Mesh

path = "if you have an STL file then put it's path here."
Otherwise vtkplotlib comes with a small STL file for demos/testing.
path = vpl.data.get_rabbit_stl()

Read the STL using numpy-stl
mesh = Mesh.from_file(path)

Plot the mesh
vpl.mesh_plot(mesh)

Show the figure
vpl.show()

Unfortunately there are far too many mesh/STL libraries/classes out there to support them all. To overcome this
as best we can, mesh_plot has a flexible constructor which accepts any of the following.

1. A filename.

2. Some kind of mesh class that has form 3 stored in mesh.vectors. For example numpy-stl’s
stl.mesh.Mesh or pymesh’s pymesh.stl.Stl

3. An np.array with shape (n, 3, 3) in the form:

np.array([[[x, y, z], # corner 0 \
[x, y, z], # corner 1 | triangle 0
[x, y, z]], # corner 2 /
...
[[x, y, z], # corner 0 \
[x, y, z], # corner 1 | triangle n-1
[x, y, z]], # corner 2 /

])

4 Chapter 1. Introduction

https://vtk.org/doc/nightly/html/classvtkLookupTable.html#details
https://pypi.org/project/numpy-stl/

vtkplotlib Documentation, Release 1.3.0

Note it’s not uncommon to have arrays of shape (n, 3, 4) or (n, 4, 3) where the additional entries’
meanings are usually irrelevant (often to represent scalars but as STL has no color this is always
uniform). Hence to support mesh classes that have these, these arrays are allowed and the extra
entries are ignored.

4. An np.array with shape (k, 3) of (usually unique) vertices in the form:

np.array([[x, y, z],
[x, y, z],
...
[x, y, z],
[x, y, z],
])

And a second argument of an np.array of integers with shape (n, 3) of point args in the form

np.array([[i, j, k], # triangle 0
...
[i, j, k], # triangle n-1
])

where i, j, k are the indices of the points (in the vertices array) representing each corner of a triangle.

Note that this form can be (and is) easily converted to form 2) using

vertices = unique_vertices[point_args]

Hopefully this will cover most of the cases. If you are using or have written an STL library (or any other format)
that you want supported then let me know. If it’s numpy based then it’s probably only a few extra lines to support.
Or you can have a go at writing it yourself, either with mesh_plot() or with the vtkplotlib.PolyData
class.

Mesh plotting with scalars:

To create a heat map like image use the scalars or tri_scalars options.

Use the scalars option to assign a scalar value to each point/corner:

import vtkplotlib as vpl
from stl.mesh import Mesh

Open an STL as before
path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

Plot it with the z values as the scalars. scalars is 'per vertex' or 1
value for each corner of each triangle and should have shape (n, 3).
plot = vpl.mesh_plot(mesh, scalars=mesh.z)

Optionally the plot created by mesh_plot can be passed to color_bar
vpl.color_bar(plot, "Heights")

vpl.show()

Use the tri_scalars option to assign a scalar value to each triangle:

import vtkplotlib as vpl
from stl.mesh import Mesh

(continues on next page)

1.5. Quickstart: 5

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

import numpy as np

Open an STL as before
path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

`tri_scalars` must have one value per triangle and have shape (n,) or (n, 1).
Create some scalars showing "how upwards facing" each triangle is.
tri_scalars = np.inner(mesh.units, np.array([0, 0, 1]))

vpl.mesh_plot(mesh, tri_scalars=tri_scalars)

vpl.show()

Note: scalars and tri_scalars overwrite each other and can’t be used simultaneously.

See also:

Having per-triangle-edge scalars doesn’t fit well with VTK. So it got its own seperate function
mesh_plot_with_edge_scalar().

Figure managing:

There are two main basic types in vtkplotlib.

• Figures are the window you plot into.

• Plots are the physical objects that go in the figures.

In all the previous examples the figure has been handled automatically. For more complex scenarios you may need to
handle the figures yourself. The following demonstrates the figure handling functions.

import vtkplotlib as vpl
import numpy as np

You can create a figure explicitly using figure()
fig = vpl.figure("Your Figure Title Here")

Creating a figure automatically sets it as the current working figure
You can get the current figure using gcf()
vpl.gcf() is fig # Should be True

If a figure hadn't been explicitly created using figure() then gcf()
would have created one. If gcf() had also not been called here then
the plotting further down will have internally called gcf().

A figure's properties can be edited directly
fig.background_color = "dark green"
fig.window_name = "A New Window Title"

points = np.random.uniform(-10, 10, (2, 3))

To add to a figure you can either:

(continues on next page)

6 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

1) Let it automatically add to the whichever figure gcf() returns
vpl.scatter(points[0], color="r")

2) Explicitly give it a figure to add to
vpl.scatter(points[1], radius=2, fig=fig)

3) Or pass fig=None to prevent it being added then add it later
arrow = vpl.arrow(points[0], points[1], color="g", fig=None)
fig += arrow
fig.add_plot(arrow) also does the same thing

Finally when your ready to view the plot call show. Like before you can
do this one of several ways
1) fig.show()
2) vpl.show() # equivalent to gcf().show()
3) vpl.show(fig=fig)

fig.show() # The program will wait here until the user closes the window.

Once a figure is shown it is gets placed in `vpl.figure_history` which
stores recent figures. The default maximum number of figures is two. For
convenience whilst console bashing, you can retrieve the last figure.
But it will no longer be the current working figure.

vpl.figure_history[-1] is fig # Should be True
fig is vpl.gcf() # Should be False

A figure can be reshown indefinitely and should be exactly as you left it
when it was closed.
fig.show()

Plots

scatter

vtkplotlib.scatter(points, color=None, opacity=None, radius=1.0, use_cursors=False, fig=’gcf’, la-
bel=None)

Scatter plot using little spheres or cursor objects.

Parameters

• points (np.array with points.shape[-1] == 3) – The point(s) to place the
marker(s) at.

• color (str, 3-tuple, 4-tuple, np.array with same shape as points, optional) – The color of
the markers, can be singular or per marker, defaults to white.

• opacity (float, np.array, optional) – The translucency of the plot, from 0
invisible to 1 solid, defaults to 1.

• radius (float, np.array, optional) – The radius of each marker, defaults to
1.0.

• use_cursors (bool, optional) – If false use spheres, if true use cursors, defaults
to False.

1.5. Quickstart: 7

vtkplotlib Documentation, Release 1.3.0

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns The marker or an array of markers.

Return type vtkplotlib.plots.Scatter.Sphere or vtkplotlib.plots.
Scatter.Cursor or np.ndarray or spheres or cursors.

Coloring by directly with scalars is not supported for scatter but you can do it using:

from matplotlib.cm import get_cmap
vpl.scatter(points, color=get_cmap("rainbow")(scalars))

plot

vtkplotlib.plot(vertices, color=None, opacity=None, line_width=1.0, join_ends=False, cmap=None,
fig=’gcf’, label=None)

Plots a line passing through an array of points.

Parameters

• vertices (np.ndarray of shape (n, 3)) – The points to plot through.

• color (str, 3-tuple, 4-tuple, np.ndarray optional) – The color(s) of
the lines, defaults to white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• line_width (float, optional) – The thickness of the lines, defaults to 1.0.

• join_ends (bool, optional) – If true, join the 1st and last points to form a closed
loop, defaults to False.

• cmap (matplotlib cmap, vtkLookupTable, or similar see vtkplotlib.colors.
as_vtk_cmap(), optional) – Colormap to use for scalars, defaults to rainbow.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns A lines object. Always a single object - even when plotting multiple lines.

Return type vtkplotlib.plots.Lines.Lines

If vertices is 3D then multiple seperate lines are plotted. This can be used to plot meshes as wireframes.

import vtkplotlib as vpl
from stl.mesh import Mesh

mesh = Mesh.from_file(vpl.data.get_rabbit_stl())
vertices = mesh.vectors

vpl.plot(vertices, join_ends=True, color="dark red")
vpl.show()

8 Chapter 1. Introduction

https://vtk.org/doc/nightly/html/classvtkLookupTable.html#details

vtkplotlib Documentation, Release 1.3.0

If color is an np.ndarray then a color per vertex is implied. The shape of color relative to the shape of vertices
determines whether the colors should be interpreted as scalars, texture coordinates or RGB values. If color is
either a list, tuple, or str then it is one color for the whole plot.

import vtkplotlib as vpl
import numpy as np

Create an octagon, using `t` as scalar values.

t = np.arange(0, 1, .125) * 2 * np.pi
vertices = vpl.zip_axes(np.cos(t),

np.sin(t),
0)

Plot the octagon.
vpl.plot(vertices,

line_width=6, # use a chunky (6pt) line
join_ends=True, # join the first and last points
color=t, # use `t` as scalar values to color it
)

use a dark background for contrast
fig = vpl.gcf()
fig.background_color = "grey"

vpl.show()

mesh_plot

vtkplotlib.mesh_plot(mesh_data, tri_scalars=None, scalars=None, color=None, opacity=None,
cmap=None, fig=’gcf’, label=None)

To plot STL files you will need some kind of STL reader library. If you don’t have one then get numpy-stl.
Their Mesh class can be passed directly to mesh_plot().

Parameters

• mesh_data (An STL (like) object (see below)) – The mesh to plot.

• tri_scalars (np.ndarray, optional) – Per-triangle scalar, texture-coordinates
or RGB values, defaults to None.

• scalars (np.ndarray, optional) – Per-vertex scalar, texture-coordinates or RGB
values, defaults to None.

• color (str, 3-tuple, 4-tuple, optional) – The color of the whole plot, ig-
nored if scalars are used, defaults to white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• cmap (matplotlib cmap, vtkLookupTable, or similar see vtkplotlib.colors.
as_vtk_cmap(), optional) – Colormap to use for scalars, defaults to rainbow.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

1.5. Quickstart: 9

https://pypi.org/project/numpy-stl/
https://vtk.org/doc/nightly/html/classvtkLookupTable.html#details

vtkplotlib Documentation, Release 1.3.0

Returns A meshplot object.

Return type vtkplotlib.plots.MeshPlot.MeshPlot

The following example assumes you have installed numpy-stl.

import vtkplotlib as vpl
from stl.mesh import Mesh

path = "if you have an STL file then put it's path here."
Otherwise vtkplotlib comes with a small STL file for demos/testing.
path = vpl.data.get_rabbit_stl()

Read the STL using numpy-stl
mesh = Mesh.from_file(path)

Plot the mesh
vpl.mesh_plot(mesh)

Show the figure
vpl.show()

Unfortunately there are far too many mesh/STL libraries/classes out there to support them all. To overcome this
as best we can, mesh_plot has a flexible constructor which accepts any of the following.

1. A filename.

2. Some kind of mesh class that has form 3 stored in mesh.vectors. For example numpy-stl’s
stl.mesh.Mesh or pymesh’s pymesh.stl.Stl

3. An np.array with shape (n, 3, 3) in the form:

np.array([[[x, y, z], # corner 0 \
[x, y, z], # corner 1 | triangle 0
[x, y, z]], # corner 2 /
...
[[x, y, z], # corner 0 \
[x, y, z], # corner 1 | triangle n-1
[x, y, z]], # corner 2 /

])

Note it’s not uncommon to have arrays of shape (n, 3, 4) or (n, 4, 3) where the additional entries’
meanings are usually irrelevant (often to represent scalars but as STL has no color this is always
uniform). Hence to support mesh classes that have these, these arrays are allowed and the extra
entries are ignored.

4. An np.array with shape (k, 3) of (usually unique) vertices in the form:

np.array([[x, y, z],
[x, y, z],
...
[x, y, z],
[x, y, z],
])

And a second argument of an np.array of integers with shape (n, 3) of point args in the form

10 Chapter 1. Introduction

https://pypi.org/project/numpy-stl/

vtkplotlib Documentation, Release 1.3.0

np.array([[i, j, k], # triangle 0
...
[i, j, k], # triangle n-1
])

where i, j, k are the indices of the points (in the vertices array) representing each corner of a triangle.

Note that this form can be (and is) easily converted to form 2) using

vertices = unique_vertices[point_args]

Hopefully this will cover most of the cases. If you are using or have written an STL library (or any other format)
that you want supported then let me know. If it’s numpy based then it’s probably only a few extra lines to support.
Or you can have a go at writing it yourself, either with mesh_plot() or with the vtkplotlib.PolyData
class.

Mesh plotting with scalars:

To create a heat map like image use the scalars or tri_scalars options.

Use the scalars option to assign a scalar value to each point/corner:

import vtkplotlib as vpl
from stl.mesh import Mesh

Open an STL as before
path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

Plot it with the z values as the scalars. scalars is 'per vertex' or 1
value for each corner of each triangle and should have shape (n, 3).
plot = vpl.mesh_plot(mesh, scalars=mesh.z)

Optionally the plot created by mesh_plot can be passed to color_bar
vpl.color_bar(plot, "Heights")

vpl.show()

Use the tri_scalars option to assign a scalar value to each triangle:

import vtkplotlib as vpl
from stl.mesh import Mesh
import numpy as np

Open an STL as before
path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

`tri_scalars` must have one value per triangle and have shape (n,) or (n, 1).
Create some scalars showing "how upwards facing" each triangle is.
tri_scalars = np.inner(mesh.units, np.array([0, 0, 1]))

vpl.mesh_plot(mesh, tri_scalars=tri_scalars)

vpl.show()

Note: scalars and tri_scalars overwrite each other and can’t be used simultaneously.

1.5. Quickstart: 11

vtkplotlib Documentation, Release 1.3.0

See also:

Having per-triangle-edge scalars doesn’t fit well with VTK. So it got its own seperate function
mesh_plot_with_edge_scalar().

mesh_plot_with_edge_scalars

vtkplotlib.mesh_plot_with_edge_scalars(mesh_data, edge_scalars, centre_scalar=’mean’,
opacity=None, cmap=None, fig=’gcf’, la-
bel=None)

Like mesh_plot() but able to add scalars per triangle’s edge. By default, the scalar value at centre of each
triangle is taken to be the mean of the scalars of its edges, but it can be far more visually effective to use
centre_scalar=fixed_value.

Parameters

• mesh_data (An STL (like) object (see below)) – The mesh to plot.

• edge_scalars (np.ndarray) – Per-edge scalar, texture-coordinates or RGB values.

• centre_scalar (str, optional) – Scalar value(s) for the centre of each triangle,
defaults to ‘mean’.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• cmap (matplotlib cmap, vtkLookupTable, or similar see vtkplotlib.colors.
as_vtk_cmap(), optional) – Colormap to use for scalars, defaults to rainbow.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns A meshplot object.

Return type vtkplotlib.plots.MeshPlot.MeshPlot

Edge scalars are very much not the way VTK likes it. Infact VTK doesn’t allow it. To overcome this, this
function triple-ises each triangle. See the diagram below to see how this is done:

(The diagrams's tacky, I know)

p1

//|\\ Double lines represent the original triangle.
// | \\ The single lines represent the division lines that

l0 // | \\ l1 split the triangle into three.
// / \ \\ The annotations show the order in which the

// / \ \\ scalar for each edge must be provided.
///~~~~~~~~~\\\

p0 ~~~~~~~~~~~~~~~ p2
l2

(reST doesn't like it either)

Here is a usage example:

12 Chapter 1. Introduction

https://vtk.org/doc/nightly/html/classvtkLookupTable.html#details

vtkplotlib Documentation, Release 1.3.0

import vtkplotlib as vpl
from vtkplotlib import geometry
from stl.mesh import Mesh
import numpy as np

path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

This is the length of each side of each triangle.
edge_scalars = geometry.distance(mesh.vectors[:, np.arange(1, 4) % 3] - mesh.
→˓vectors)

vpl.mesh_plot_with_edge_scalars(mesh, edge_scalars, centre_scalar=0, cmap="Greens
→˓")

vpl.show()

I wrote this orginally to visualise curvature. The calculation is ugly, but on the off chance someone needs it,
here it is.

import vtkplotlib as vpl
from vtkplotlib import geometry
from stl.mesh import Mesh
import numpy as np

path = vpl.data.get_rabbit_stl()
mesh = Mesh.from_file(path)

def astype(arr, dtype):
return np.frombuffer(arr.tobytes(), dtype)

def build_tri2tri_map(mesh):
"""This creates an (n, 3) array that maps each triangle to its 3
adjacent triangles. It takes advantage of each triangles vertices
being consistently ordered anti-clockwise. If triangle A shares an
edge with triangle B then both A and B have the edges ends as
vertices but in opposite order. Looking for this helps reduce the
complexity of the problem.
"""

The most efficient way to make a pair of points hashable is to
take its binary representation.
dtype = np.array(mesh.vectors[0, :2].tobytes()).dtype

vectors_rolled = mesh.vectors[:, np.arange(1, 4) % 3]

Get all point pairs going one way round.
pairs = np.concatenate((mesh.vectors, vectors_rolled), -1)

Get all point pairs going the other way round.
pairs_rev = np.concatenate((vectors_rolled, mesh.vectors), -1)

bin_pairs = astype(pairs, dtype).reshape(-1, 3)
bin_pairs_rev = astype(pairs_rev, dtype).reshape(-1, 3)

(continues on next page)

1.5. Quickstart: 13

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

Use a dictionary to find all the matching pairs.
mapp = dict(zip(bin_pairs.ravel(), np.arange(bin_pairs.size) // 3))
args = np.fromiter(map(mapp.get, bin_pairs_rev.flat), dtype=float, count=bin_

→˓pairs.size).reshape(-1, 3)

Triangles with a missing adjacent edge come out as nans.
Convert mapping to ints and nans to -1s.
mask = np.isfinite(args)
tri2tri_map = np.empty(args.shape, int)
tri2tri_map[mask] = args[mask]
tri2tri_map[~mask] = -1

return tri2tri_map

tri2tri_map = build_tri2tri_map(mesh)

tri_centres = np.mean(mesh.vectors, axis=1)
curves = np.cross(mesh.units[tri2tri_map], mesh.units[:, np.newaxis])
displacements = tri_centres[tri2tri_map] - tri_centres[:, np.newaxis]
curvatures = curves / geometry.distance(displacements, keepdims=True)

curvature_signs = np.sign(geometry.inner_product(mesh.units[:, np.newaxis],
displacements)) * -1

signed_curvatures = geometry.distance(curvatures) * curvature_signs

And finally, to plot it.
plot = vpl.mesh_plot_with_edge_scalars(mesh, signed_curvatures)

Curvature must be clipped to prevent anomalies overwidenning the
scalar range.
plot.scalar_range = -.1, .1

Red represents an inside corner, blue represents an outside corner.
plot.cmap = "coolwarm_r"

vpl.show()

polygon

vtkplotlib.polygon(vertices, scalars=None, color=None, opacity=None, fig=’gcf’, label=None)
Creates a filled polygon(s) with vertices as it’s corners. For a 3 dimensional vertices array, each 2d array within
vertices is a seperate polygon.

Parameters

• vertices (np.ndarray with shape ([number_of_polygons,]
points_per_polygon, 3)) – Each corner of each polygon.

• color (str, 3-tuple, 4-tuple, optional) – The color of whole the plot, de-
faults to white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

14 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns A polygon object.

Return type vtkplotlib.plots.Polygon.Polygon

VTK renders everything as only triangles. Polygons with more than 3 sides are broken down by VTK into
multiple triangles. For non-flat polygons with many sides, the fragmentation doesn’t look too great.

scalar_bar

vtkplotlib.scalar_bar(plot, title=”, fig=’gcf’)
Create a scalar bar. Also goes by the alias colorbar.

Parameters

• plot – The plot with scalars to draw a scalarbar for.

• title (str, optional) – , defaults to ‘’.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

Returns The scalarbar object.

Return type vtkplotlib.plots.ScalarBar.ScalarBar

The plot argument can be the output of any vtkplotlib.*** command that takes scalars as an argument.

arrow

vtkplotlib.arrow(start, end, length=None, width_scale=1.0, color=None, opacity=None, fig=’gcf’, la-
bel=None)

Draw (an) arrow(s) from start to end.

Parameters

• start (np.ndarray) – The starting point(s) of the arrow(s).

• end (np.ndarray) – The end point(s) of the arrow(s).

• length (number, np.ndarray, optional) – The length of the arrow(s), defaults
to None.

• width_scale (number, np.ndarray, optional) – How fat to make each arrow,
is relative to its length, defaults to 1.0.

• color (str, 3-tuple, 4-tuple, np.ndarray of shape (n, 3)) – The
color of each arrow, defaults to white.

• opacity (float) – The translucency of the plot, from 0 invisible to 1 solid, defaults to 1.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

1.5. Quickstart: 15

vtkplotlib Documentation, Release 1.3.0

Returns arrow or array of arrows

Return type vtkplotlib.plots.Arrow.Arrow, np.array of Arrows

The shapes of start and end should match. Arrow lengths are automatically calculated via pythagoras if not
provided but can be overwritten by setting length. In this case the arrow(s) will always start at start but may
not end at end. length can either be a single value for all arrows or an array of lengths to match the number of
arrows.

Note: Arrays are supported only for convenience and just use a python for loop. There is no speed bonus to
using numpy or trying to plot in bulk here.

See also:

vtkplotlib.quiver() for field plots.

quiver

vtkplotlib.quiver(point, gradient, length=None, length_scale=1.0, width_scale=1.0, color=None,
opacity=None, fig=’gcf’, label=None)

Create arrow(s) from ‘point’ towards a direction given by ‘gradient’ to make field/quiver plots. Arrow lengths
by default are the magnitude of ‘gradient but can be scaled with ‘length_scale’ or frozen with ‘length’. See
arrow’s docs for more detail.

Parameters

• point (np.ndarray) – The starting point of the arrow(s).

• gradient (np.ndarray) – The displacement / gradient vector.

• length (NoneType, optional) – A frozen length for each arrow, defaults to None.

• length_scale (int, optional) – A scaling factor for the length of each arrow, de-
faults to 1.0.

• width_scale (int, optional) – How fat to make each arrow, is relative to its length,
defaults to 1.0.

• color (str, 3-tuple, 4-tuple, np.ndarray of shape (n, 3)) – The
color of each arrow, defaults to white.

• opacity (float) – The translucency of the plot, from 0 invisible to 1 solid, defaults to 1.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns arrow or array of arrows

Return type vtkplotlib.plots.Arrow.Arrow, np.array of Arrows

See also:

vpl.arrow to draw arrows from a start point to an end point.

16 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

text

vtkplotlib.text(text_str, position=(0, 0), fontsize=18, use_pixels=False, color=(1, 1, 1), opacity=None,
fig=’gcf’)

2D text at a fixed point on the window (independent of camera position / orientation).

Parameters

• text_str (str, object) – The text, converts to string if not one already.

• position (2-tuple of ints, optional) – The (x, y) position in pixels on
the screen, defaults to (0, 0) (left, bottom).

• fontsize (int, optional) – Text height (ignoring tails) in pixels, defaults to 18.

• color (str, 3-tuple, 4-tuple, optional) – The color of the text, defaults to
white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

Returns The text plot object.

Return type vtkplotlib.plots.Text.Text

The text doesn’t resize or reposition itself when the window is resized. It’s on the todo list.

See also:

vpl.text3D

text3d

vtkplotlib.text3d(text, position=(0, 0, 0), follow_cam=True, scale=1, color=None, opacity=None,
fig=’gcf’, label=None)

Create floating text in 3D space. Optionally can be set to orientate itself to follow the camera (defaults to on)
with the follow_cam argument.

Parameters

• string – The text to be shown.

• position (tuple, optional) – The position of the start of the text, defaults to (0, 0,
0).

• follow_cam (bool, optional) – Automatically rotates to follow the camera, de-
faults to True.

• scale (number or 3-tuple of numbers, optional) – The height of one line
of text, can have 3 values, defaults to 1.0.

• color (str, 3-tuple, 4-tuple, optional) – The color of the text, defaults to
white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

1.5. Quickstart: 17

vtkplotlib Documentation, Release 1.3.0

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns text3D plot object

Return type vtkplotlib.plots.Text3D.Text3D

Warning: This can’t be passed about between figures if follow_cam=True (the default). The figure
who’s camera it follows is frozen to the figure given to it on first construction.

See also:

vpl.text for 2D text at a fixed point on the screen.

See also:

vpl.annotate for a convenient way to label features with text and an arrow.

annotate

vtkplotlib.annotate(points, text, direction, text_color=’w’, arrow_color=’k’, distance=3.0,
text_size=1.0, fig=’gcf’)

Annotate a feature with an arrow pointing at a point and a text label on the reverse end of the arrow. This is just
a convenience call to arrow() and text3d(). See there for just one or the other.

Parameters

• points (np.ndarray) – The position of the feature where the arrow’s tip should be.

• text – The text to put in the label.

• direction (np.ndarray with shape (3,)) – The direction from the feature to
the text position as a unit vector.

• text_color (optional) – The color of the label, defaults to ‘w’.

• arrow_color (optional) – The color of the arrow, defaults to ‘k’.

• distance (number, optional) – The distance from the feature to the label, defaults
to 3.0.

• text_size (number or 3-tuple of numbers, optional) – The height of
one line of text, can have 3 values, defaults to 1.0.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

Returns (arrow, text) 2-tuple

Return type (vtkplotlib.plots.Arrow.Arrow, vtkplotlib.plots.Text3D.
Text3D)

The arrow points to the highest point and the text is placed at a point distance above (where above also is
determined by direction).

If text is not a str then it is automatically converted to one.

18 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

import vtkplotlib as vpl
import numpy as np

Create a ball at a point in space.
point = np.array([1, 2, 3])
vpl.scatter(point)

vpl.annotate(point,
"This ball is at {}".format(point),
np.array([0, 0, 1]))

vpl.show()

If multiple points are given the farthest in the direction direction is selected. The idea is to try to prevent the
annotations ending up in amongst the plots or, when plotting meshes, inside the mesh.

import vtkplotlib as vpl
import numpy as np

Create several balls.
points = np.random.uniform(-30, 30, (30, 3))
vpl.scatter(points, color=np.random.random(points.shape))

vpl.annotate(points,
"This ball is the highest",
np.array([0, 0, 1]),
text_color="k",
arrow_color="orange"
)

vpl.annotate(points,
"This ball is the lowest",
np.array([0, 0, -1]),
text_color="rust",
arrow_color="hunter green"
)

vpl.show()

surface

vtkplotlib.surface(x, y, z, scalars=None, color=None, opacity=None, texture_map=None,
cmap=None, fig=’gcf’, label=None)

Create a parametrically defined surface. This is intended for visualising mathematical functions of the form

𝑧 = 𝑓(𝑥, 𝑦)

or

𝑥 = 𝑓(𝜑, 𝜃) 𝑦 = 𝑔(𝜑, 𝜃) 𝑧 = ℎ(𝜑, 𝜃)

Parameters

• x (2D np.ndarray with shape (m, n)) – x components.

• y (2D np.ndarray with shape (m, n)) – y components.

1.5. Quickstart: 19

vtkplotlib Documentation, Release 1.3.0

• z (2D np.ndarray with shape (m, n)) – z components.

• scalars (np.ndarray with shape (m, n [, 1 or 2 or 3]),
optional) – per-point scalars / texturemap coordinates / RGB colors, defaults to
None.

• color (str, 3-tuple, 4-tuple, optional) – The color of the plot, defaults to
white.

• opacity (float, optional) – The translucency of the plot, from 0 invisible to 1
solid, defaults to 1.

• cmap (matplotlib cmap, vtkLookupTable, or similar see vtkplotlib.colors.
as_vtk_cmap(), optional) – Colormap to use for scalars, defaults to rainbow.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• label (str, optional) – Give the plot a label to use in legends, defaults to None.

Returns The surface object.

Return type vtkplotlib.surface

See also:

vtkplotlib.mesh_plot() for a surface made out of triangles or vtkplotlib.polygon() for a sur-
face made out of polygons.

This is the only function in vtkplotlib that takes it’s (x, y, z) components as seperate arguments. x, y and
z should be 2D arrays with matching shapes. This is typically achieved by using phi, theta = np.
meshgrid(phis, thetas) then calculating x, y and z from phi and theta. Here is a rather unexciting
example.

import vtkplotlib as vpl
import numpy as np

phi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 1024),
np.linspace(0, np.pi, 1024))

x = np.cos(phi) * np.sin(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(theta)

vpl.surface(x, y, z)

vpl.show()

See also:

A parametrically constructed object plays well with a vtkplotlib.colors.TextureMap.

legend

vtkplotlib.legend(plots_source=’fig’, fig=’gcf’, position=(0.7, 0.7), size=(0.3, 0.3), color=’grey’,
opacity=None, allow_non_polydata_plots=False, allow_no_label=False)

Creates a legend to label plots.

20 Chapter 1. Introduction

https://vtk.org/doc/nightly/html/classvtkLookupTable.html#details

vtkplotlib Documentation, Release 1.3.0

Parameters

• plots_source (iterable of plots or None, optional) – Plots to use in
the legend, can be None, defaults to fig.plots.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to plot
into, can be None, defaults to vtkplotlib.gcf().

• position (tuple pair of floats, optional) – Position (relative to the size
of the figure) of the bottom left corner, defaults to (0.7, 0.7).

• size (tuple pair of floats, optional) – Size (relative to the size of the fig-
ure) of the legend, defaults to (0.3, 0.3).

• color (str, 3-tuple, 4-tuple, optional) – The background color of the leg-
end, defaults to ‘grey’.

• allow_no_label (bool, optional) – Allow plots that have no label to have label
None, only applicable if entries are added automatically, defaults to False.

• allow_non_polydata_plots (bool, optional) – Allow plots that have no poly-
data to represented with a box, only applicable if entries are added automatically, defaults
to False.

Returns The legend created.

Return type vtkplotlib.plots.Legend.Legend

Elements can be added to the legend automatically or explicitly. Most plot commands have an optional label
argument. If this is used then they will be added automatically. Multiple plots with the same label will be
grouped.

import vtkplotlib as vpl
import numpy as np

Create some plots with labels
vpl.scatter([0, 0, 0], color="red", label="Red Ball")
vpl.scatter(vpl.zip_axes(5, np.arange(0, 10, 4), 0), color="yellow", label=
→˓"Yellow Ball")

A plot without a label will not be included in the legend.
vpl.scatter([10, 0, 0], color="green")

Create the legend
vpl.legend()
Unless told otherwise this internally calls
legend.add_plots(vpl.gcf().plots)

vpl.show()

The legend uses a tabular format.

Symbol Icon Text Label
Symbol Icon Text Label
Symbol Icon Text Label

• A symbol is a 2D representation of the original plot. VTK can generate these flattened snapshots from a
polydata object which most plots either have or can generate. These are accessible via plot.polydata.

• An icon is just a 2D image. Note that VTK only supports greyscale icons in legends.

1.5. Quickstart: 21

vtkplotlib Documentation, Release 1.3.0

• The text label, as the name suggests, is just a piece of text.

All three columns are optional. If a column is never used throughout the legend then the contents adjusts to
close the space. Color can only be applied per-row. i.e the symbol, icon and text of an entry are always the same
color.

The following example shows how to set the entries explicitly.

import vtkplotlib as vpl

Create a legend and don't allow it to fill itself.
legend = vpl.legend(plots_source=None)

A labelled plot contains all the information it needs to add itself.
sphere = vpl.scatter([0, 5, 10], color="g", label="Green Ball")
Add it like so.
legend.set_entry(sphere)

Written explicitly the above is equivalent to:
legend.set_entry(symbol=sphere.polydata, color=sphere.color, label=sphere.label)

Not all plots can have a polydata. If one isn't provided then a by
default a square is used.
legend.set_entry(label="Blue Square", color="blue")

Alternatively, if explicitly given ``symbol=None``, then the symbol
space is left blank.
legend.set_entry(symbol=None, label="Just Text")

Most plots can be used.
legend.set_entry(vpl.mesh_plot(vpl.data.get_rabbit_stl()), label="Rabbit")

To use an icon, pass a string path, array, PIL image or vtkImageData
to the **icon** argument. The image is converted to greyscale
automatically.
legend.set_entry(None, label="Shark", icon=vpl.data.ICONS["Right"])

vpl.show()

legend.set_entry has an optional argument index which can be used to overwrite rows. Otherwise it
defaults to appending a row.

Some caveats / potential sources of confusion:

• Long and thin plots such as arrow() tend to mess up the spacing which is seemingly non configurable.

• Be careful when using scatter() and quiver() which return an array of plots rather than a single
plot.

• Plots based on lines such as the output of vpl.plot tend not to show well as the lines are less than one pixel
wide.

• Automatic setting of color can only work for uniformly colored plots. any colors derived from scalars are
ignored.

22 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

To some extent, the text labels can be customised via legend.text_options which holds the vtkTextProp-
erty (bucket class for settings like font). However, a lot of its methods do nothing. Most notably, legend.
text_options.SetFontSize(size) has no effect.

custom plots using PolyData

vtkplotlib.PolyData(vtk_polydata=None, mapper=None)
The polydata is a key building block to making customised plot objects. The mesh_plot, plot and surface
methods are in fact just a thin wrapping layer around a PolyData. This is a wrapper around VTK’s vtkPoly-
Data object, which is functionally equivalent, but difficult and crash-prone to work with directly.

Parameters vtk_polydata (vtk.vtkPolyData, optional) – An original vtkPolyData to
build on top of, defaults to None.

A polydata consists of the following 2D numpy arrays:

Attribute name dtype shape Meaning
points float (a, 3)

All line start and end
points
and all polygon corners.

lines int (b, 3)

Each row of lines
corresponds
the point indices a line
passes
through.

polygons int (c, 3)

Each row of polygons
corresponds
the point indices a the
corners of
a polygon.

point_colors float (a,) (a, 1) (a, 2) (a, 3)

Per-point scalars,
texture coordinates
or RGB values,
depending on the shape.

polygon_colors float (c,) (c, 1) (c, 2) (c, 3)

Per-polygon scalars,
texture coordinates
or RGB values,
depending on the shape.

1.5. Quickstart: 23

https://vtk.org/doc/nightly/html/classvtkPolyData.html#details
https://vtk.org/doc/nightly/html/classvtkPolyData.html#details
https://vtk.org/doc/nightly/html/classvtkPolyData.html#details

vtkplotlib Documentation, Release 1.3.0

The points aren’t visible themselves - to create some kind of points plot use :meth‘scatter‘.

Lines and polyons can be interchanged to switch from solid surface to wire-frame.

Here is an example to create a single triangle

import vtkplotlib as vpl
import numpy as np

polydata = vpl.PolyData()

polydata.points = np.array([[1, 0, 0], # vertex 0
[0, 1, 0], # vertex 1
[0, 0, 1]], float) # vertex 2

Create a wire-frame triangle passing through vertices [0, 1, 2, 0].
polydata.lines = np.array([[0, 1, 2, 0]])

Create a solid triangle with vertices [0, 1, 2] as it's corners.
polydata.polygons = np.array([[0, 1, 2]])

The polydata can be quickly inspected using
polydata.quick_show()

When you are happy with it, it can be turned into a proper plot
object like those output from other ``vpl.***()`` commands. It will be
automatically added to ``vpl.gcf()`` unless told otherwise.
plot = polydata.to_plot()
vpl.show()

Figures

Figures, typically abbreviated to figs, are the window that you plot into. This section outlines:

• Their creation.

• General figure management.

• Functions for controlling the camera position.

• Screenshotting the figure contents to a frozen image (file).

• Embedding a figure into PyQt5.

Overview

Some of this is handled automatically. There is a global “current working figure”. This can be get and set using vpl.
gcf() and vpl.scf(fig). If it doesn’t exist then it is automatically created. Each plot command will add itself to
the current working figure unless explicitly told not by setting fig=None or fig=alternative_fig in the plot
command. The figure is shown using vpl.show() or fig.show(). After the shown figure is closed it ceases to
be the current working figure but you can use it by referencing it explicitly. Figures can be reshown indefinitely and
should be exactly as you left them on close.

24 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

show

vtkplotlib.show(block=True, fig=’gcf’)
Shows a figure. This is analogous to matplotlib’s show function. After your plot commands call this to open the
interactive 3D viewer.

Parameters

• block (bool, optional) – Enter interactive mode, otherwise just open the window,
defaults to True.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
show, defaults to vtkplotlib.gcf().

If block is True then it enters interactive mode and the program is held until window exit. Otherwise the window
is opened but not monitored. i.e an image will appear on the screen but it wont respond to being clicked on. By
editing the plot and calling fig.update() you can create an animation but it will be non-interactive. True
interactive animation hasn’t been implemented yet - it’s on the TODO list.

Note: You might feel tempted to run show in a background thread. It doesn’t work. If anyone does manage it
then please let me know.

Warning: A window can not be closed by the close button until it is in interactive mode. Otherwise it’ll
just crash Python. Use vtkplotlib.close() to close a non interactive window.

The current figure is reset on exit from interactive mode.

figure

vtkplotlib.figure
alias of vtkplotlib.figures.figure.Figure

gcf

vtkplotlib.gcf(create_new=True)
Gets the current working figure.

Parameters create_new (bool, optional) – Allow a new one to be created if none exist,
defaults to True.

Returns The current figure or None.

Return type vtkplotlib.figure or vtkplotlib.QtFigure

If none exists then a new one gets created by vpl.figure() unless create_new=False in which case
None is returned. Will always return None if auto_figure(False) has been called.

1.5. Quickstart: 25

vtkplotlib Documentation, Release 1.3.0

scf

vtkplotlib.scf(figure)
Sets the current working figure.

Parameters figure – A figure or None.

screenshot_fig

vtkplotlib.screenshot_fig(magnification=1, pixels=None, trim_pad_width=None,
off_screen=False, fig=’gcf’)

Take a screenshot of a figure. The image is returned as an array. To save a screenshot directly to a file, see
vpl.save_fig.

Parameters

• path (str or Pathlike) – The path, including extension, to save to.

• magnification (int or a (width, height) tuple of ints,
optional) – Image dimensions relative to the size of the render (window), defaults to 1.

• pixels (int or a (width, height) tuple of ints, optional) – Im-
age dimensions in pixels, defaults to None.

• trim_pad_width (positive int for padding in pixels, float
from 0.0 - 1.0 for pad width relative to original size.) – Op-
tionally auto crop to contents, this specifies how much space to give it, defaults to None for
no cropping.

• off_screen (bool, optional) – If true, attempt to take the screenshot without open-
ing the figure’s window, defaults to False.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
screenshot, defaults to vtkplotlib.gcf().

Setting pixels overrides magnification. If only one dimension is given to pixels then it is the height and an
aspect ration of 16:9 is used. This is to match with the 1080p/720p/480p/. . . naming convention.

Note: VTK can only work with integer multiples of the render size (given by figure.render_size).
pixels will be therefore be rounded to conform to this.

Note: I have no idea why it spins. But vtk’s example in the docs does it as well so I think it’s safe to say there’s
not much we can do about it.

Note: For QtFigures off_screen is ignored.

Warning: There has been a case where the contents of other windows (e.g Firefox) have somehow ended up
in the output (see <https://github.com/bwoodsend/vtkplotlib/issues/1>). Which can be resolved by setting
off_screen=True. But this option can lead to a bad X server connection error on (I think) Linux
machines without built in graphics hardware. This is currently unresolved.

26 Chapter 1. Introduction

https://github.com/bwoodsend/vtkplotlib/issues/1

vtkplotlib Documentation, Release 1.3.0

save_fig

vtkplotlib.save_fig(path, magnification=1, pixels=None, trim_pad_width=None, off_screen=False,
fig=’gcf’, **imsave_plotargs)

Take a screenshot and saves it to a file.

Parameters

• path (str or Pathlike) – The path, including extension, to save to.

• magnification (int or a (width, height) tuple of ints,
optional) – Image dimensions relative to the size of the render (window), defaults to 1.

• pixels (int or a (width, height) tuple of ints, optional) – Im-
age dimensions in pixels, defaults to None.

• off_screen (bool, optional) – If true, attempt to take the screenshot without open-
ing the figure’s window, defaults to False.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
save, defaults to vtkplotlib.gcf().

This just calls vpl.screenshot_fig then passes it to matplotlib’s pylab.imsave function. See those
for more information.

The available file formats are determined by matplotlib’s choice of backend. For JPEG, you will likely need to
install PILLOW. JPEG has considerably better file size than PNG.

view

vtkplotlib.view(focal_point=None, camera_position=None, camera_direction=None, up_view=None,
fig=’gcf’)

Set/get the camera position/orientation.

Parameters

• focal_point (np.array([x, y, z]), optional) – A point the camera should
point directly to, defaults to None.

• camera_position (np.array([x, y, z]), optional) – The point the cam-
era is situated, defaults to None.

• camera_direction (np.array([eX, eY, eZ]), optional) – The direction
the camera is pointing, defaults to None.

• up_view (np.array([eX, eY, eZ]), optional) – Roll the camera so that the
up_view vector is pointing towards the top of the screen, defaults to None.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
modify, defaults to vtkplotlib.gcf().

Returns A dictionary containing the new configuration.

Return type dict

1.5. Quickstart: 27

vtkplotlib Documentation, Release 1.3.0

Note: This function’s not brilliant. You may be better off manipulating the vtk camera directly (stored in fig.
camera). If you do choose this route, start experimenting by calling print(fig.camera). If anyone
makes a better version of this function then please share.

There is an unfortunate amount of implicit chaos going on here. Here are some hidden implications. I’m not
even sure these are all true.

1. If forwards is used then focal_point and camera_position are ignored.

2. If camera_position is given but focal_point is not also given then camera_position is rela-
tive to where VTK determines is the middle of your plots. This is equivalent to setting
camera_direction=-camera_position.

The following is well behaved:

vpl.view(camera_direction=...,
up_view=...,) # set orientations first

vpl.reset_camera() # auto reset the zoom

reset_camera

vtkplotlib.reset_camera(fig=’gcf’)
Reset the position and zoom of the camera so that all plots are visible.

Parameters fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
modify, defaults to vtkplotlib.gcf().

This does not touch the orientation. It pushes the camera without rotating it so that, whichever direction it is
pointing, it is pointing into the middle of where all the plots are. Then it adjusts the zoom so that everything fits
on the screen.

zoom_to_contents

vtkplotlib.zoom_to_contents(plots_to_exclude=(), padding=0.05, fig=’gcf’)
VTK, by default, leaves the camera zoomed out so that the renders contain a large amount of empty background.
zoom_to_contents() zooms in so that the contents fill the render.

Parameters

• plots_to_exclude (iterable of plots, optional) – Plots that are unim-
portant and can be cropped out, defaults to ().

• padding (int, float, optional) – Amount of space to leave around the contents,
in pixels if integer or relative to min(fig.render_size) if float defaults to 0.05.

• fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure zoom,
defaults to :meth:`vtkplotlib.gcf`.

This method only zooms in. If you need to zoom out to fit all your plots in call vtkplotlib.
reset_camera() first then this method. Plots in plots_to_exclude are temporarily hidden (using plot.
visible = False) then restored. 2D plots such as a legend() or scalar_bar() which have a fixed
position on the render are always excluded.

28 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

Note: New in v1.3.0.

close

vtkplotlib.close(fig=’gcf’)
Close a figure.

Parameters fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
close, defaults to vtkplotlib.gcf().

If the figure is the current figure then the current figure is reset.

figure_history

vtkplotlib.figure_history = <FigureHistory deque([], maxlen=2)>

auto_figure

vtkplotlib.auto_figure(auto=None)
Enables/disables automatic figure management. If no parameters are provided then it returns the current state.

Parameters auto (bool, optional) – Defaults to None.

On by default. Disabling causes vpl.gcf() to always return None. Meaning that all plot commands will not
add to a figure unless told to explicitly using the fig=a_figure argument. This can be useful for complex
scenarios involving multiple figures.

QtFigure

class vtkplotlib.QtFigure(name=’qt vtk figure’, parent=None)
The VTK render window embedded into a PyQt5 QWidget. This can be embedded into a GUI the same way all
other QWidgets are used.

Parameters

• name (str, optional) – The window title of the figure, only applicable is parent is
None, defaults to ‘qt vtk figure’.

• parent (PyQt5.QtWidgets.QWidget, optional) – Parent window, defaults to
None.

1.5. Quickstart: 29

vtkplotlib Documentation, Release 1.3.0

Note: If you are new to Qt then this is a rather poor place to start. Whilst many libraries in Python are intuitive
enough to be able to just dive straight in, Qt is not one of them. Preferably familiarise yourself with some basic
Qt before coming here.

This class inherits both from PyQt5.QtWidgets.QWidget and a vtkplotlib BaseFigure class. Therefore it
can be used exactly the same as you would normally use either a QWidget or a vtkplotlib.figure.

Care must be taken when using Qt to ensure you have exactly one QApplication. To make this class quicker to
use the qapp is created automatically but is wrapped in a

if QApplication.instance() is None:
self.qapp = QApplication(sys.argv)

else:
self.qapp = QApplication.instance()

This prevents multiple QApplication instances from being created (which causes an instant crash) whilst also
preventing a QWidget from being created without a qapp (which also causes a crash).

On self.show(), self.qapp.exec_() is called automatically if self.parent() is None (unless
specified otherwise). If the QFigure is part of a larger window then larger_window.show() must also
explicitly show the figure. It won’t begin interactive mode until qapp.exec_() is called.

If the figure is not to be part of a larger window then it behaves exactly like a regular figure. You just need to
explicitly create it first.

import vtkplotlib as vpl

Create the figure. This automatically sets itself as the current
working figure. The qapp is created automatically if one doesn't
already exist.
vpl.QtFigure("Exciting Window Title")

Everything from here on should be exactly the same as normal.

vpl.quick_test_plot()

Automatically calls ``qapp.exec_()``. If you don't want it to then
use ``vpl.show(False)``.
vpl.show()

However this isn’t particularly helpful. A more realistic example would require the figure be part of a larger
window. In this case, treat the figure as you would any other QWidget. You must explicitly call figure.
show() however. (Not sure why.)

import vtkplotlib as vpl
from PyQt5 import QtWidgets
import numpy as np
import sys

python 2 compatibility
from builtins import super

class FigureAndButton(QtWidgets.QWidget):
def __init__(self):

super().__init__()

(continues on next page)

30 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

Go for a vertical stack layout.
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)

Create the figure
self.figure = vpl.QtFigure()

Create a button and attach a callback.
self.button = QtWidgets.QPushButton("Make a Ball")
self.button.released.connect(self.button_pressed_cb)

QtFigures are QWidgets and are added to layouts with `addWidget`
vbox.addWidget(self.figure)
vbox.addWidget(self.button)

def button_pressed_cb(self):
"""Plot commands can be called in callbacks. The current working
figure is still self.figure and will remain so until a new
figure is created explicitly. So the ``fig=self.figure``
arguments below aren't necessary but are recommended for
larger, more complex scenarios.
"""

Randomly place a ball.
vpl.scatter(np.random.uniform(-30, 30, 3),

color=np.random.rand(3),
fig=self.figure)

Reposition the camera to better fit to the balls.
vpl.reset_camera(self.figure)

Without this the figure will not redraw unless you click on it.
self.figure.update()

def show(self):
The order of these two are interchangeable.
super().show()
self.figure.show()

def closeEvent(self, event):
"""This isn't essential. VTK, OpenGL, Qt and Python's garbage
collect all get in the way of each other so that VTK can't
clean up properly which causes an annoying VTK error window to
pop up. Explicitly calling QtFigure's `closeEvent()` ensures
everything gets deleted in the right order.
"""
self.figure.closeEvent(event)

qapp = QtWidgets.QApplication.instance() or QtWidgets.QApplication(sys.argv)

(continues on next page)

1.5. Quickstart: 31

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

window = FigureAndButton()
window.show()
qapp.exec_()

Note: QtFigures are not reshowable if the figure has a parent.

See also:

vtkplotlib.QtFigure2 is an extension of this to provide some standard GUI elements, ready-made.

QtFigure2

class vtkplotlib.QtFigure2(name=’qt vtk figure’, parent=None)
This is intended to be used as/for a more sophisticated GUI when one is needed. By providing some common
features here, hopefully this can speed up the tedious process of building a GUI. Any contributions here would
be very welcome. I want to write this so that each extra feature is optional allowing custom GUIs can be built
quickly.

This is still under development. Currently it has:

1. A screenshot button.

2. A panel for preset camera views.

3. An actor table to show / hide / color plots interactively (although it needs some way to group them).

I hope/intend to add:

1. Suggestions welcome here. . .

Use this class the same way you would use vpl.QtFigure (see there first.) Each feature is added with a
fig.add_***() method.

import vtkplotlib as vpl
import numpy as np

Create the figure. This as-is looks like just a QtFigure.
fig = vpl.QtFigure2()

Add each feature you want. Pass arguments to customise each one.
fig.add_screenshot_button(pixels=1080)
fig.add_preset_views()
fig.add_show_plot_table_button()
Use ``fig.add_all()`` to add all them all.

You will likely want to dump the above into a function. Or a class
inheriting from ``vpl.QtFigure2``.

The usual, plot something super exciting.
vpl.polygon(np.array([[1, 0, 0],

[1, 1, 0],
[0, 1, 1],
[0, 0, 1]]), color="grey")

(continues on next page)

32 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

(continued from previous page)

Then either ``vpl.show()`` or
fig.show()

Colors

The vtkplotlib.colors module provides methods for:

• Converting the various color types and matplotlib’s named colors to RGB(A) using as_rgb_a().

• Creating and converting colormaps (usually abbreviated to cmap) to VTK’s equivalent vtkLookupTable
class.

• Texture mapping.

For the most part, these methods are used implicitly whenever you set the color or cmap arguments of any of vtk-
plotlib’s classes/methods/attributes. But if you’re doing something unusual then these may help.

Note: This submodule was introduced in v1.3.0.

Individual Colors

as_rgb_a

vtkplotlib.colors.as_rgb_a(color=None, opacity=None)
This method converts all the different ways a single color and opacity can be specified into the form (np.
array([red, green, blue]), opacity).

The color argument can be:

1. A string named color such as “r” or “red”. This uses matplotlib’s named color libraries. For a full
list of available colors see the dicts BASE_COLORS, CSS4_COLORS and XKCD_COLORS from mat-
plotlib.colors or vtkplotlib.colors.mpl_colors.keys().

2. A tuple or list of 3 or 4 scalars representing (r, g, b) or (r, g, b, alpha). r, g, b, alpha can be from 0 to 1 or
from 0 to 255 (inclusive).

3. An html hex string in the form “#RRGGBB” or “#RRGGBBAA” where "RR", "GG", "BB" and "AA"
are hexadecimal numbers from 00 to FF.

4. A PyQt5.QtGui.QColor().

The opacity argument should be a scalar like those for the (r, g, b) from form 2 above values.

If an opacity if specified in both arguments then opacity argument overrides alpha values in color.

Note: Conventionally the values if they are from 0.0 to 1.0 they should be floats and if they are from 0 to 255
they should be ints. But this is so often not the case that this rule is unusable. This function divides by 255 if
the scalars are integers and it sees anything greater than 1.

1.5. Quickstart: 33

vtkplotlib Documentation, Release 1.3.0

Colormaps

Colormaps are used to visualize scalar data as heatmaps. The color map determines which color represents each scalar
value. In VTK, colormaps are called lookup tables and are of type vtk.vtkLookupTable.

Any vtkplotlib method that takes cmap argument can utilise a colormap.

import vtkplotlib as vpl
from stl.mesh import Mesh

Load the usual rabbit.
mesh = Mesh.from_file(vpl.data.get_rabbit_stl())

fig = vpl.figure()

Use the x values as scalars. Use matplotlib's "rainbow" colormap.
plot = vpl.mesh_plot(mesh, scalars=mesh.x, cmap="rainbow")
fig.show()

The cmap is accessed as a vtkLookupTable via the cmap attribute.
plot.cmap
(vtkCommonCorePython.vtkLookupTable)0000003C06D06F40

Create and set a new cmap from a list of colors.
plot.cmap = ["red", "white", "green"]
fig.show()

Explicitly set the scalar range
plot.scalar_range = -20, 20
fig.show()

Set the scalar range back to automatic
plot.scalar_range = ...

Note that in Python 2.7 you can’t use ... except when indexing. Use Ellipsis instead.

as_vtk_cmap

vtkplotlib.colors.as_vtk_cmap(cmap, cache=True)
Colormaps are generally converted implicitly from any valid format to a vtk.vtkLookupTable using this
method. Any valid format is defined as the following:

1. A string matplotlib colormap name such as 'RdYlGn'.

2. Anything out of the matplotlib.cm package.

3. A list of named colors such as ["red", "white", "blue"]. See cmap_from_list() for more
details and flexibility.

4. An (n, 3) or (n, 4) numpy array of RGB(A) int or float values.

5. A callable that takes an array of scalars and returns an array of form 4.

Unless specified otherwise using cache=False, named colormaps of form 1 are cached in vtkplotlib.
colors.converted_cmaps. If you intend to modify the vtkLookupTable then it’s best not to allow
caching.

34 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

Note: VTK doesn’t interpolate between colors. i.e if you use form 4 and only provide a short list of colors then
the resulting heatmap will be block colors rather than a smooth gradient.

Note: Whilst VTK appears to support opacity gradients in the colormaps, it doesn’t actually use them. If your
colormap says opacity should vary with scalars then the opacity is averaged for the plot.

cmap_from_list

vtkplotlib.colors.cmap_from_list(colors, opacities=None, scalars=None, resolution=None)
Create a colormap from a list of colors. Unlike matplotlib’s ListedColormap, this method will interpolate
between the input colors to give a smooth map.

Parameters

• colors (list of valid colors as defined by as_rgb_a()) – A list colors.

• opacities (Scalar from 0 to 1 or array-like of scalars,
optional) – Translucency or translucencies, defaults to None.

• scalars (array-like with same length as colors, optional) – Control scalars to correspond
exact colors from color, defaults to None.

• resolution (int, optional) – Number of colors in output, defaults to
(len(points) - 1) * 255 + 1.

Returns An array of RGBA values.

Return type np.ndarray with shape (n, 4) and dtype np.uint8

The output can be fed either to as_vtk_cmap() or passed directly as a cmap argument to any vtkplotlib
method that takes one.

vtkLookupTable

VTK’s vtkLookupTable provides some useful functionality that you can’t access any other way. Assuming you
have a lookup table called table you can use the following:

1.5. Quickstart: 35

vtkplotlib Documentation, Release 1.3.0

Methods Meaning

table.GetBelowRangeColor()
table.SetBelowRangeColor()
table.GetUseBelowRangeColor()
table.SetUseBelowRangeColor()

Choose a color to use when given
a scalar below the scalar range.
This must be enabled explicitly to
use.

table.GetAboveRangeColor()
table.SetAboveRangeColor()
table.GetUseAboveRangeColor()
table.SetUseAboveRangeColor()

Choose a color to use when given
a scalar above the scalar range.
This must be enabled explicitly to
use.

table.GetNanColor()
table.SetNanColor()
table.GetUseNanColor()
table.SetUseNanColor()

Choose a color to use when given
a NaN scalar.
This must be enabled explicitly to
use.

Note: The scalar range is not controlled by the lookup table.

Texture Maps

Texture maps are like colormaps but two dimensional. i.e Rather than feeding it a scalar and getting a color, you give
it an x and y coordinate and get a color. Texture maps allow you to color surfaces realistically to look like fur or grass
or brickwork by using a texture map containing a 2D image of that texture.

TextureMap

class vtkplotlib.colors.TextureMap(array, interpolate=False)
Use a 2D image as a color lookup table.

Warning: This is still very much under development and requires a bit of monkey-wrenching to use.
Currently only vpl.surface and vpl.PolyData have any support for it.

Parameters

• array (filename, np.ndarray with shape (m, n, 3 or 4), PIL
Image) – The image data. It is converted to an array if it isn’t one already.

• interpolate (bool, optional) – Allow interpolation between pixels, defaults to
False.

36 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

Returns A callable texturemap object.

Return type vtkplotlib.TextureMap

The TextureMap object can be called to look up the color at a coordinate(s). Like everything else in vtkplotlib,
texture coordinates should be zipped into a single array of the form:

np.array([[x0, y0],
[x1, y1],
...,
[xn, yn]])

Unlike typical images, texture-map coordinates traditionally use the conventional (x, y) axes. i.e Right is x-
increasing and up is y-increasing. Indices are always between 0 and 1 and are independent of the size of the
image. To use texture-coordinates, pass an array with array.shape[-1] == 2 as the scalar argument to a
plot command.

Typically texture-maps are found in some 3D file formats but integrating those is still under development.
Texture-maps also play very well with parametric plots, namely vpl.surface using the 2 independent vari-
ables as the texture coordinates.

import vtkplotlib as vpl
import numpy as np

Define the 2 independent variables
phi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 1024),

np.linspace(0, np.pi, 1024))

Calculate the x, y, z values to form a sphere
x = np.cos(phi) * np.sin(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(theta)

You can play around with this. The coordinates must be zipped
together into one array with ``shape[-1] == 2``, hence the
``vpl.zip_axes``. And must be between 0 and 1, hence the ``% 1.0``.
texture_coords = (vpl.zip_axes(phi * 3, theta * 5) / np.pi) % 1.0

Pick an image to use. There is a picture of a shark here if you
don't have one available.
path = vpl.data.ICONS["Right"]
texture_map = vpl.TextureMap(path, interpolate=True)

You could convert `texture_coords` to `colors` now using.
colors = texture_map(texture_coords)
then pass ``colors`` as the `scalars` argument instead.

vpl.surface(x, y, z,
scalars=texture_coords,
texture_map=texture_map)

vpl.show()

Misc

1.5. Quickstart: 37

vtkplotlib Documentation, Release 1.3.0

normalise

vtkplotlib.colors.normalise(colors, axis=None)
Scale and translate RBG(A) values so that they are all between 0 and 1.

Parameters

• colors (np.ndarray) – Array of colors.

• axis (int, optional) – Axis to reduce over, normally either -1 or None are sensible,
defaults to None.

Returns Normalised colors.

Return type np.ndarray

The output should have the properties np.min(out, axis) == 0 and np.max(out, axis) == 1.

import vtkplotlib as vpl
import numpy as np

points = np.random.uniform(-30, 30, (300, 3))

This would be an invalid way to color by position.
vpl.scatter(points, color=points)

A better way to color by position.
vpl.scatter(points, color=vpl.colors.normalise(points))
vpl.show()

Images

The image_io subpackage provides tools for working 2D images. It includes methods for:

• Converting to and from VTK’s vtkImageData class.

• Image reading and writing via VTK’s image reader/writer classes.

• The image trimming utilised by vtkplotlib.screenshot_fig() and vtkplotlib.save_fig().

For the most part, vtkplotlib converts implicitly to/from its preferred format, which is just a numpy array of RGB
values, using methods from here. But if you are venturing into a region of VTK that vtkplotlib doesn’t cover then
these may be useful.

vtkplotlib’s default image format is the same as matplotlib’s. i.e an (m, n, 3) numpy array with dtype np.uint8.
The most convenient way to visualise is using matplotlib’s imshow method.

Note: This submodule was introduced in v1.3.0.

Conversions

Coonverting numpy to vtkImageData and back is ugly. These methods do this for you.

38 Chapter 1. Introduction

https://vtk.org/doc/nightly/html/classvtkImageData.html#details
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html
https://vtk.org/doc/nightly/html/classvtkImageData.html#details

vtkplotlib Documentation, Release 1.3.0

vtkimagedata_from_array

vtkplotlib.image_io.vtkimagedata_from_array(arr, image_data=None)
Convert a numpy array to a vtkImageData.

Parameters

• arr (np.ndarray with dtype np.uint8) – Array of colors.

• image_data (vtkImageData, optional) – An image data to write into, a new one is created
if not specified, defaults to None.

Returns A VTK image.

Return type vtkImageData

Grayscale images are allowed. arr.shape can be any of (m, n) or (m, n, 1) for greyscale, (m, n,
3) for RGB, or (m, n, 4) for RGBA.

See also:

vtkimagedata_to_array() for the reverse.

See also:

as_vtkimagedata() for converting from other types.

vtkimagedata_to_array

vtkplotlib.image_io.vtkimagedata_to_array(image_data)
Convert a vtkImageData to numpy array.

See also:

vtkimagedata_from_array() for the reverse.

as_vtkimagedata

vtkplotlib.image_io.as_vtkimagedata(x, ndim=None)
Convert x to a vtkImageData.

x can be any of the following:

• A vtkImageData.

• A 2D or 3D numpy array.

• A file or filename to be read.

• A Pillow image.

Some VTK methods require a greyscale image. Using ndim=2 will convert to greyscale.

1.5. Quickstart: 39

https://vtk.org/doc/nightly/html/classvtkImageData.html#details
https://vtk.org/doc/nightly/html/classvtkImageData.html#details

vtkplotlib Documentation, Release 1.3.0

Read and Write

VTK provides classes for reading and writing images to disk. These are somewhat superseded by Pillow (Python
image library) which does the same thing. But these methods are included anyway just incase you don’t want to use
Pillow.

read

vtkplotlib.image_io.read(path, raw_bytes=None, format=None, convert_to_array=True)
Read an image from a file using one of VTK’s vtkFormatReader classes where Format is replaced by
JPEG, PNG, BMP or TIFF.

Parameters

• path (str, os.PathLike, io.BytesIO) – Filename or file handle or None if us-
ing the raw_bytes argument.

• raw_bytes (bytes, optional) – Image compressed binary data, defaults to None.

• format (str, optional) – Image format extension (e.g. jpg), not needed if format
can be determined from path, defaults to None.

• convert_to_array (bool, optional) – If true, convert to numpy, otherwise leave
as vtkImageData, defaults to True.

Returns Read image.

Return type np.ndarray or vtkImageData

The file format can be determined automatically from the path suffix or the beginning of raw_bytes. format
can be any of JPEG, PNG, TIFF, BMP. It is case insensitive, tolerant to preceding ‘.’s e.g. format=".jpg"
and understands the aliases JPG JPEG and TIF TIFF.

The following demonstrates how to use pseudo file objects to avoid temporary files when reading an image from
the web.

import vtkplotlib as vpl

Link you're image url here
url = "https://raw.githubusercontent.com/bwoodsend/vtkplotlib/master/vtkplotlib/
→˓data/icons/Right.jpg"

You can make the url request with either:
from urllib import request
raw_bytes = request.urlopen(url).read()

Or if you have the more modern requests library installed:
import requests
raw_bytes = requests.get(url).content

Pass the bytes to :meth:`read` using:
image = vpl.image_io.read(path=None, raw_bytes=raw_bytes)

Visualize using matplotlib.
from matplotlib import pyplot
pyplot.imshow(image)
pyplot.show()

40 Chapter 1. Introduction

https://pillow.readthedocs.io/en/stable/
https://vtk.org/doc/nightly/html/classvtkImageData.html#details

vtkplotlib Documentation, Release 1.3.0

Warning: Some formats only support reading from disk. See vtkplotlib.image_io.
BUFFERABLE_FORMAT_MODES or for which these are.

Note: BytesIO and raw bytes functionality is new in vtkplotlib >= 1.3.0. Older versions are hardcoded to write
to disk and therefore path must be a filename and not a BytesIO or similar pseudo file object.

write

vtkplotlib.image_io.write(arr, path, format=None, quality=95)
Write an image from a file using one of VTK’s vtkFormatWriter classes where Format is replaced by
JPEG or PNG.

Parameters

• arr (np.ndarray) – arr can be a vtkImageData or a numpy array.

• path (str, os.Pathlike, io.BytesIO,) – File path to write to.

• format (str, optional) – Image format extension (e.g. jpg), not needed if format
can be determined from path, defaults to None.

• quality (int from 0 to 100, optional) – Lossy compression quality, only ap-
plicable to JPEGs, defaults to 95.

Returns The raw image binary if path is None, NotImplemented if the filetype is unknown.
Otherwise no return value.

Return type bytes

See read() for more information.

Note: BytesIO and raw bytes functionality is new in vtkplotlib >= 1.3.0. Older versions are hardcoded to write
to disk and therefore path must be a filename and not a BytesIO or similar pseudo file object.

Formats allowing pseudo files

Some formats allow reading and writing from RAM whereas others must use the disk. The following table summerises
which are allowed. This table is accessable via vtkplotlib.image_io.BUFFERABLE_FORMAT_MODES.

Name Allowed modes
JPEG Read and Write
PNG Write
TIFF
BMP Write

1.5. Quickstart: 41

https://vtk.org/doc/nightly/html/classvtkImageData.html#details

vtkplotlib Documentation, Release 1.3.0

Misc

trim_image

vtkplotlib.image_io.trim_image(arr, background_color, crop_padding)
Crop an image to its contents so that there aren’t large amounts of empty background.

Parameters

• arr (3D np.ndarray) – An image array.

• background_color (Strictly an (r, g, b) tuple.) – The color of the por-
tions to crop away.

• crop_padding (int or float) – Space to leave, in pixels if int, or relative to image
size if float.

Returns Smaller image array.

Return type 3D np.ndarray

If you don’t want your files smaller you can instead use vtkplotlib.zoom().

Utilities

A few miff-muffet-moof functions.

zip_axes

vtkplotlib.zip_axes(*axes)
Convert vertex data from seperate arrays for x, y, z to a single combined points array like most vpl functions
require.

Parameters axes (array_like or scalar) – Each seperate axis to combine.

All axes must have the matching or broadcastable shapes. The number of axes doesn’t have to be 3.

import vtkplotlib as vpl
import numpy as np

vpl.zip_axes(np.arange(10),
4,
np.arange(-5, 5))

Out: array([[0, 4, -5],
[1, 4, -4],
[2, 4, -3],
[3, 4, -2],
[4, 4, -1],
[5, 4, 0],
[6, 4, 1],
[7, 4, 2],
[8, 4, 3],
[9, 4, 4]])

42 Chapter 1. Introduction

vtkplotlib Documentation, Release 1.3.0

See also:

unzip_axes() for the reverse.

unzip_axes

vtkplotlib.unzip_axes(points)
Seperate each component from an array of points.

Parameters points (np.ndarray) – Some points.

Returns Each axis separately as a tuple.

Return type tuple of arrays

See vpl.zip_axes() more information and the reverse.

quick_test_plot

vtkplotlib.quick_test_plot(fig=’gcf’)
A quick laziness function to create 30 random spheres.

Parameters fig (vtkplotlib.figure, vtkplotlib.QtFigure, optional) – The figure to
plot into, can be None, defaults to vtkplotlib.gcf().

import vtkplotlib as vpl

vpl.quick_test_plot()
vpl.show()

Contributing to vtkplotlib

Contribution and communication guide.

General feedback or suggestions

For either the API or the docs use the github issues page and mark it with an appropriate label.

Bug report

To report an issue or to point out undesirable behavior, please use the issues page. Please include:

• vtkplotlib version.

• Versions of all libraries listed under *Requirements for installing* and *Optional requirements* in our quickstart
page. (Use pip show numpy or pip freeze -> packages.txt to find these versions.)

• Python version.

1.5. Quickstart: 43

https://github.com/bwoodsend/vtkplotlib/issues/
https://github.com/bwoodsend/vtkplotlib/issues/
https://vtkplotlib.readthedocs.io/en/latest/#requirements-for-installing
https://vtkplotlib.readthedocs.io/en/latest/#optional-requirements
https://vtkplotlib.readthedocs.io/en/latest/

vtkplotlib Documentation, Release 1.3.0

• Whether or not you use Anaconda.

• OS.

• Along with the usual, what did you do? And what did vtkplotlib do wrong?

Request new features

To request a feature, either create an issue or just ping me at bwoodsend@gmail.com. This library has rather grown
organically as I need new features for other projects. Other features are generally not included because I haven’t
needed them yet rather than because they would be too much hassle. There are loads of VTK classes which I
haven’t ported over but would be easy (couple of hours work max) from me to do so. You can search online for
vtk [feature_name] example (it’ll likely be in C++ which is OK) or rummage around in the VTK names-
pace to see if one exists. If it doesn’t then submit an issue anyway and I’ll see what I can do. If you want to be specific
or just to help you can sketch out the function. Something like the following would help. It doesn’t need to be properly
typeset.

def exciting_new_feature(some, key, parameters, or, options, you, think, youll, need):
Some vague info about the types, desired effect, defaults of each parameter from
above. Doesn't have to be complete.

Any handy little (type) abstractions you can would like. Such as:
if not isinstance(text_parameter, str):

text_parameter = str(text_parameter)
It doesn't have to be proper code.

leave the implementation to me...
unless you have any suggestions

return # What, if anything, should come out?

Or whatever you feel makes the point. . .

Documentation suggestions

To suggest a documentation improvement, or to point out a function or component that is poorly documented or
completely undocumented, submit an issue along with the url or function / class name or attribute that needs changing
along with any suggested text if you have any.

Write your own feature

You are welcome to this, but if it’s a one off and you’re not already familiar with VTK, then you’re probably better off
just to request it. The learning curve for VTK is steep, and the internals of vtkplotlib are pretty unorganized. But if
you’re determined then don’t let me stop you. One day I’ll get round to documenting all the core base classes used to
add new features, but until then, feel free to ping me bwoodsend@gmail.com first for guidance. I have a few features
half-prepped hidden away and unexposed so you may not need to start from scratch.

If you do know VTK, then you may find it easier to write a pure VTK proof of concept script and I’ll handle the rest.
Please don’t waste time trying to re-implement a particular piece of API such as color="string" arguments -
there are base classes and internal methods for doing these which I can link up in seconds.

You can either create a fork, and then a pull request, or you can just write a separate script that runs, using VTK and/or
vtkplotlib (or anything else) and I’ll turn it into a vtkplotlib feature.

44 Chapter 1. Introduction

mailto:bwoodsend@gmail.com
mailto:bwoodsend@gmail.com

vtkplotlib Documentation, Release 1.3.0

Become a collaborator

If you want to join the team then cool - you’re hired! Again, email me. You will need a fairly good understanding of
VTK or be willing to learn it. I’ll eventually write a proper description of the library’s internals to guide you.

Donations

If this library has helped you and you want to throw some cash at someone then these are a couple of my favourite
charities.

1.5. Quickstart: 45

https://uk.virginmoneygiving.com/Team/vtkplotlib

vtkplotlib Documentation, Release 1.3.0

46 Chapter 1. Introduction

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

47

vtkplotlib Documentation, Release 1.3.0

48 Chapter 2. Indices and tables

Python Module Index

v
vtkplotlib.colors, 33
vtkplotlib.image_io, 38

49

vtkplotlib Documentation, Release 1.3.0

50 Python Module Index

Index

A
annotate() (in module vtkplotlib), 18
arrow() (in module vtkplotlib), 15
as_rgb_a() (in module vtkplotlib.colors), 33
as_vtk_cmap() (in module vtkplotlib.colors), 34
as_vtkimagedata() (in module vtk-

plotlib.image_io), 39
auto_figure() (in module vtkplotlib), 29

C
close() (in module vtkplotlib), 29
cmap_from_list() (in module vtkplotlib.colors), 35

F
figure (in module vtkplotlib), 25
figure_history (in module vtkplotlib), 29

G
gcf() (in module vtkplotlib), 25

L
legend() (in module vtkplotlib), 20

M
mesh_plot() (in module vtkplotlib), 9
mesh_plot_with_edge_scalars() (in module

vtkplotlib), 12

N
normalise() (in module vtkplotlib.colors), 38

P
plot() (in module vtkplotlib), 8
PolyData() (in module vtkplotlib), 23
polygon() (in module vtkplotlib), 14

Q
QtFigure (class in vtkplotlib), 29

QtFigure2 (class in vtkplotlib), 32
quick_test_plot() (in module vtkplotlib), 43
quiver() (in module vtkplotlib), 16

R
read() (in module vtkplotlib.image_io), 40
reset_camera() (in module vtkplotlib), 28

S
save_fig() (in module vtkplotlib), 27
scalar_bar() (in module vtkplotlib), 15
scatter() (in module vtkplotlib), 7
scf() (in module vtkplotlib), 26
screenshot_fig() (in module vtkplotlib), 26
show() (in module vtkplotlib), 25
surface() (in module vtkplotlib), 19

T
text() (in module vtkplotlib), 17
text3d() (in module vtkplotlib), 17
TextureMap (class in vtkplotlib.colors), 36
trim_image() (in module vtkplotlib.image_io), 42

U
unzip_axes() (in module vtkplotlib), 43

V
view() (in module vtkplotlib), 27
vtkimagedata_from_array() (in module vtk-

plotlib.image_io), 39
vtkimagedata_to_array() (in module vtk-

plotlib.image_io), 39
vtkplotlib.colors (module), 33
vtkplotlib.image_io (module), 38

W
write() (in module vtkplotlib.image_io), 41

51

vtkplotlib Documentation, Release 1.3.0

Z
zip_axes() (in module vtkplotlib), 42
zoom_to_contents() (in module vtkplotlib), 28

52 Index

	Introduction
	Key features
	Requirements for installing:
	Installation:
	Optional requirements:
	Quickstart:

	Indices and tables
	Python Module Index
	Index

